

Himax Technologies, Inc.

Himax Technologies, Inc.

Software Package
(SDK)

Himax SH430UH
Linux UVC Extension Controls
User Manual

Preliminary version 1.1. Jun 7, 2020

(DOC No. SLIM-SWSDK

 -P.2- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Revision History

Jun 7, 2020

Version Date Description of changes

1.0 2020/12/15 First release.

1.1 2021/06/07 Add Liveness check command.

 -P.3- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

List of Contents

Jun 7, 2020

List of Contents

1. Linux UVC Extension Controls API usage ... 4
1.1 uvc_error_t uvc_hx_get_ci1_fw_version(uvc_device_handle_t *devh, char *ci1_fw_version,
uint16_t ci1_fw_version_len) .. 4
1.2 uvc_error_t uvc_hx_set_frame_mode(uvc_device_handle_t *devh, enum hx_frame_mode_select
mode_id) ... 4
1.3 uvc_error_t uvc_hx_roi_set_feature(uvc_device_handle_t *devh, struct hx_roi_table_feature
*feature) .. 4
1.4 uvc_error_t uvc_hx_roi_set_coordinate(uvc_device_handle_t *devh, uint8_t weighting, int *box,
int size) .. 5
1.5 uvc_error_t uvc_hx_set_2d_target_fmean(uvc_device_handle_t *devh, uint16_t fmean, uint16_t
bound) ... 5
1.6 uvc_error_t uvc_hx_get_2d_target_fmean(uvc_device_handle_t *devh, uint16_t *fmean, uint16_t
*bound) .. 6
1.7 uvc_error_t uvc_hx_set_again(uvc_device_handle_t *devh, uint8_t again) 6
1.8 uvc_error_t uvc_hx_get_hv2_fw_version(uvc_device_handle_t *devh, hx_hv2_fw_version_t
*hv2_fw_version)... 6
1.9 uvc_error_t uvc_hx_get_intrinsic_extrinsic_matrices(uvc_device_handle_t *devh,
hx_cam_intrinsic_extrinsic_matrices_t *cam_matrices, int require_scaling) .. 7
1.10 uvc_error_t uvc_hx_get_build_type(uvc_device_handle_t *devh, uint16_t *build_type) 7
1.11 uvc_error_t uvc_hx_get_serial_number(uvc_device_handle_t *devh, uint32_t *serial_number) ... 8
1.12 uvc_error_t uvc_hx_set_face_recognize(uvc_device_handle_t *devh, uint8_t mode, uint16_t
face_id, uint16_t *result) ... 8
1.13 uvc_error_t uvc_hx_set_liveness_check(uvc_device_handle_t *devh, uint8_t mode, uint16_t
*result) ... 8

 -P.4- Himax Technologies, Inc. Confidential
 Jun 7, 2020
This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Preliminary Version 1.1

Jun 7, 2020

1. Linux UVC Extension Controls API usage

Himax added custom Linux UVC Extension Controls APIs as following sections.

1.1 uvc_error_t uvc_hx_get_ci1_fw_version(uvc_device_handle_t *devh, char
*ci1_fw_version, uint16_t ci1_fw_version_len)

Read the Ci1 FW version from Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument ci1_fw_version is a pointer pointed to a char array with length of 32.

※ 3rd argument ci1_fw_version_len should be fixed 32.

1.2 uvc_error_t uvc_hx_set_frame_mode(uvc_device_handle_t *devh, enum
hx_frame_mode_select mode_id)

Select Himax frame mode function for changing the frame sequence of the first UVC
video streaming interface for NIR/depth video streaming (Not applied to the second UVC
video streaming interface for RGB video streaming), instead of the default
2D(NIR)/(3D)Depth alternative mode.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument mode_id value is defined in the enum hx_frame_mode_select in the
libuvc.h header file, currently only support following modes.

◼ HX_FRAME_MODE_SELECT_ONLY_NIR (NIR only.)

◼ HX_FRAME_MODE_SELECT_ONLY_DEPTH (Depth only.)

◼ HX_FRAME_MODE_SELECT_ALT_NIR_DEPTH (default 2D(NIR)/(3D)Depth
alternative mode.)

1.3 uvc_error_t uvc_hx_roi_set_feature(uvc_device_handle_t *devh, struct
hx_roi_table_feature *feature)

Sent the ROI set feature command to Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

 -P.5- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Application Note Preliminary v1.1

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument feature is a pointer pointed to a hx_roi_table_feature structure.
This feature contains six bit-fields, total 8-bits:

bit[7] bit[6] bit[5] bit[4] bit[3:2] bit[1:0]
sync update clear reset type mode

※ There are 3 cases to use this API, please clear all fields first before set any field bit:

◼ Before calling uvc_hx_roi_set_coordinate(), set mode = 1 and clear = 1.

◼ After calling uvc_hx_roi_set_coordinate(), set update = 1 and sync = 1.

◼ Reset ROI to default state once you want to stop ROI: set reset = 1.

1.4 uvc_error_t uvc_hx_roi_set_coordinate(uvc_device_handle_t *devh, uint8_t
weighting, int *box, int size)

Sent the ROI set coordinate command to Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument weighting is currently set to 0x05.

※ 3rd argument box is a pointer pointed to an int array with length of 4.

◼ This box contains two landscape coordinates (x1, y1) and (x2, y2), and store as
following integer ordering:

[0] [1] [2] [3]

x1 y1 x2 y2

◼ And, these two landscape coordinates are presented as below diagram:

※ 4th argument size should be fixed 4.

1.5 uvc_error_t uvc_hx_set_2d_target_fmean(uvc_device_handle_t *devh, uint16_t
fmean, uint16_t bound)

Set the target fmean and bound values of the 2D frame of Himax UVC camera device.

(0, 0)

(x1, y1)

(x2, y2)

(1279, 799)

 -P.6- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Application Note Preliminary v1.1

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument fmean is a 16-bit integer, fmean + bound should be in 0...1023.

※ 3rd argument bound is a 16-bit integer, fmean + bound should be in 0...1023.

1.6 uvc_error_t uvc_hx_get_2d_target_fmean(uvc_device_handle_t *devh, uint16_t
*fmean, uint16_t *bound)

Get the target fmean and bound values of the 2D frame of Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument fmean is a pointer pointed to a 16-bit integer to be read.

※ 3rd argument bound is a pointer pointed to a 16-bit integer to be read.

1.7 uvc_error_t uvc_hx_set_again(uvc_device_handle_t *devh, uint8_t again)

Set the A-gain value of Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument again is a 8-bit integer.

1.8 uvc_error_t uvc_hx_get_hv2_fw_version(uvc_device_handle_t *devh,
hx_hv2_fw_version_t *hv2_fw_version)

Read the HV2 FW Version data from Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument hv2_fw_version is a pointer pointed to a Himax custom data
structure hx_hv2_fw_version_t, which contains the chip_id/version_major
/data(YYMMDD)/version_minor/customer_id fields, please check the libuvc.h
header file for more details.

 -P.7- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Application Note Preliminary v1.1

1.9 uvc_error_t uvc_hx_get_intrinsic_extrinsic_matrices(uvc_device_handle_t
*devh, hx_cam_intrinsic_extrinsic_matrices_t *cam_matrices, int
require_scaling)

Read the camera’s intrinsic and extrinsic parameter matrices from Himax UVC camera
device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument cam_matrices is a pointer pointed to a Himax custom data structure
hx_cam_intrinsic_extrinsic_matrices_t, which contains the target NIR sensor
width/height w_d/h_d, target RGB sensor width/height w_r/h_r, NIR sensor’s
intrinsic matrix Kd[3][3], and it’s inverse matrix Kd_[3][3], RGB sensor’s intrinsic
matrix Kr[3][3], rotation component R[3][3] and translation component T[3] of
the extrinsic matrix translated from NIR to RGB, please check the libuvc.h header
file for more details.

※ 3rd argument require_scaling is used to select right camera intrinsic/extrinsic
parameter matrices for different target video resolution:
0: Output camera matrices of HD resolution,
 (NIR/Depth: 1280x800, RGB:1280x800),
 and, set NIR/Depth frame size w_d/h_d to 1280/800,
 and, set RGB frame size w_r/h_r to 1280/800.
1: Output camera matrices of VGA resolution,
 (NIR/Depth: 640x400, RGB: 640x480) which is ½ downscaling,
 and, set NIR/Depth frame size w_d/h_d to 640/400,
 and, set RGB frame size w_r/h_r to 640/480.

※ Note: This function will also do pre-calculating the inverse matrix of NIR sensor’s
intrinsic matrix (Kd_[3][3]), that can be used in another Himax utility function
uvc_hx_rectified_coordinate() API, which is used for converting NIR to RGB
coordinates.

1.10 uvc_error_t uvc_hx_get_build_type(uvc_device_handle_t *devh, uint16_t
*build_type)

Read the build type from Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument build_type is a pointer pointed to a 16-bit integer, presents as four
hexadecimals string, likes “D1C1” or similar values; otherwise “0xFFFF” (16-bit with
all “ones”) means the UVC device’s build type hasn’t been provisioned yet.

 -P.8- Himax Technologies Inc. Confidential

Jun 7, 2020
0

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or
disclosed in whole or in part without prior written permission of Himax.

Himax SH430UH
Software Package (SDK)

Application Note Preliminary v1.1

1.11 uvc_error_t uvc_hx_get_serial_number(uvc_device_handle_t *devh, uint32_t
*serial_number)

Read the serial number (SN) from Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to read.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument serial_number is a pointer pointed to a 32-bit integer, presents as a
positive integer, likes “14” or similar values; otherwise “0xFFFFFFFF” (32-bit with all
“ones”) means the UVC device’s serial number hasn’t been provisioned yet.

1.12 uvc_error_t uvc_hx_set_face_recognize(uvc_device_handle_t *devh, uint8_t
mode, uint16_t face_id, uint16_t *result)

Trigger one action of face recognition/registration/deletion on Himax UVC camera
device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument mode is an 8-bit integer, set “0” to do face recognition, set “1” to do
face registration, set “'d'” to delete registered faces in face database with specified
face id.

※ 3rd argument face_id is a 16-bit integer, only used in face deletion action, presents
as the face id to be deleted; if set value as “0xFFFF”, then it will delete all registered
faces in face database (clear all faces).

※ 4th argument result is a pointer pointed to a 16-bit integer, presents as the result
returned from face SDK, if it returned result has “0xE0XX” prefix value means there
is error occurred, otherwise the required action is finished successfully with returned
face id in this result value.

1.13 uvc_error_t uvc_hx_set_liveness_check(uvc_device_handle_t *devh, uint8_t
mode, uint16_t *result)

Trigger one action of face liveness check on Himax UVC camera device.

※ This function needs an available UVC device handle, so it must be called after
uvc_open() function called successfully.

※ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to set.

※ 1st argument devh is the UVC device handle to be read.

※ 2nd argument mode is an 8-bit integer, currently only support mode “0”.

※ 3rd argument result is a pointer pointed to a 16-bit integer, presents as the result
returned from face SDK, if it returned result has “0xE0XX” prefix value means there
is error occurred, otherwise the required action is finished successfully.

	1. Linux UVC Extension Controls API usage
	1.1 uvc_error_t uvc_hx_get_ci1_fw_version(uvc_device_handle_t *devh, char *ci1_fw_version, uint16_t ci1_fw_version_len)
	1.2 uvc_error_t uvc_hx_set_frame_mode(uvc_device_handle_t *devh, enum hx_frame_mode_select mode_id)
	1.3 uvc_error_t uvc_hx_roi_set_feature(uvc_device_handle_t *devh, struct hx_roi_table_feature *feature)
	1.4 uvc_error_t uvc_hx_roi_set_coordinate(uvc_device_handle_t *devh, uint8_t weighting, int *box, int size)
	1.5 uvc_error_t uvc_hx_set_2d_target_fmean(uvc_device_handle_t *devh, uint16_t fmean, uint16_t bound)
	1.6 uvc_error_t uvc_hx_get_2d_target_fmean(uvc_device_handle_t *devh, uint16_t *fmean, uint16_t *bound)
	1.7 uvc_error_t uvc_hx_set_again(uvc_device_handle_t *devh, uint8_t again)
	1.8 uvc_error_t uvc_hx_get_hv2_fw_version(uvc_device_handle_t *devh, hx_hv2_fw_version_t *hv2_fw_version)
	1.9 uvc_error_t uvc_hx_get_intrinsic_extrinsic_matrices(uvc_device_handle_t *devh, hx_cam_intrinsic_extrinsic_matrices_t *cam_matrices, int require_scaling)
	1.10 uvc_error_t uvc_hx_get_build_type(uvc_device_handle_t *devh, uint16_t *build_type)
	1.11 uvc_error_t uvc_hx_get_serial_number(uvc_device_handle_t *devh, uint32_t *serial_number)
	1.12 uvc_error_t uvc_hx_set_face_recognize(uvc_device_handle_t *devh, uint8_t mode, uint16_t face_id, uint16_t *result)
	1.13 uvc_error_t uvc_hx_set_liveness_check(uvc_device_handle_t *devh, uint8_t mode, uint16_t *result)

